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ABSTRACT 

In 1991 A. D. Gunawardena et al. reported that the convergence rate of the 
Gauss-Seidel method with a preconditioning matrix Z + S is superior to that of the 
basic iterative method. In this paper, we use the preconditioning matrix Z + S(a). If 
a coefficient matrix A is an irreducibly diagonally dominant Z-matrix, then [I + 
S( a)]A is also a strictly diagonally dominant Z-matrix. It is shown that the proposed 
method is also superior to other iterative methods. 0 1997 Elsevier Science Inc. 

1. INTRODUCTION 

Let us consider iterative methods for the solution of the linear system 

Ax=b, (1) 

where A is an n X n square matrix, and x and b are vectors. Then the basic 
iterative scheme for Equation (1) is 

MX k+l =Nxk +b, k = O,l, . . . . (2) 
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where A = M - N, and M is nonsingular. Thus (2) can also be written as 

x k + l  = Txk + c, k = 0, 1 . . . . .  (3) 

where T = M - 1 N ,  c = M - l b .  Assuming A = I - L - U, where I is the 
identity matrix, and L and U are strictly lower and strictly upper  triangular 
matrices, respectively, the iteration matrix of  the classical Gauss-Seidel method  
is given by T = ( I  - L ) - I U .  

We now transform the original system (1) into the precondit ioned form 

PAx  = Pb.  (4) 

Then, we can define the basic iterative scheme: 

MpXk+ 1 = Npx k q- Pb,  k = O, 1 . . . . .  (5) 

where PA = Mp - Np and  Mp is nonsingular. 
Recently, Gunawardena et al. [1] proposed the modified Gauss-Seidel 

method with P - I + S, where 

0 

0 

S =  

0 

0 

-a12 0 "" 0 

0 - a23 -'. 0 

0 0 . . . .  a,~_ 1, , 

0 0 0 0 

The performance of  this method on some matrices is investigated in [1]. 
In  this paper, we propose a scheme for improving of  the modified 

Ganss-Seidel method and discuss convergence. Finally, we show that this 
method yields a considerable improvement  in the rate of  convergence. 

2. P R O P O S E D  M E T H O D  

First, let us summarize the modified Gauss-Seidel method [1] with the 
precondit ioner P = I + S. Let  all elements a , +  1 of  S be nonzero. Then  we 
have 

= ( i +  s ) ~  = [ ; - t -  s t -  ( u -  s + s u ) l x ,  

/, = ( i  + s )b .  
(6) 
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Whenever 

aii+lai+li + ’ for i = 1,2,..., n - 1, 

(I - SL - L)-l exisfs, and hence it is possible to define the Gauss-Seidel 
iteration matrix for A, namely 

f = (Z - SL - L)_'(U - s + SU). (7) 

This iteration matrix T’ is called the modified Gauss-Seidel iteration matrix. 
We next propose a new iterative method with the preconditioned matrix, 

P=Z+S(a), 

where S( (Y) is 

S(a) = 

Thus we obtain 

0 - ala12 

0 0 

6 6 

0 0 

A(a) = [Z+S(o)]A=Z- 

b(a) = [I + S(a)]b. 

Whenever 

_ 

0 . . . 0 

-cx2u23 *** 0 

;, ..: . 
-%-la,-,. 

0 0 0 

L-S(a)L-[u-s(a)+s(a)u], 

(8) 

for i = 1,2 ,..., n - 1, 

[I - S( a)L - LIP1 exists, and hence it is possible to define the Gauss-Seidel 
iteration matrix for A( a), namely 

T(a) = [I - S(cr)L - L]_l[U - S(a) + S(a)U]. (9) 

REMARK 1. In (9), if q = 0 for all i, T(a) reduces to the classical 
Gauss-Seidel iterative method, and if q = 1 for all i, T(Q) reduces to the 
modified Gauss-Seidel iterative method. 
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3. CONVERGENCE OF THE PROPOSED METHOD 

First, we give a well-known result [2, 31. 

LEMMA 2. An upper bound on the spectral radius p(T) for the Gauss- 

Seidel iteration matrix T is given by 

P(T) 
iii 

< max- 
i 1-C’ 

where c and iii are the sums of the mod& of the elements in row i of the 
triangular matrices L and U, respectively. 

Next, we discuss the convergence of the proposed method. Let A( LY) = 
D(a) - E(a) - ~(a), where D(a), -E(a), and -F(cr) are the diagonal, 
strictly lower triangular, and strictly upper triangular parts of A(a). Then the 
elements of A( a) are 

i 

ajj - "jajj+laj+lja 1<i<n, 
ajj = 

a,j. i=n 

If A is a diagonally dominant Z-matrix, then we have 

0 < aii+lai+lj < 1 for j#i+l, 

- 1 < aji+laj+lj+l < 0. 

Therefore, the following inequalities hold: 

(10) 

(11) 

ajj+l e aj+,j<O, l<i<n. 
j=i+l 
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For simplicity we denote 

Pi = ‘ii+l’i+li~ 

i-l 
4i = aii+l C ai+lj, 

j=l 

‘i = aii+l 2 ai+ljT for l<i<n, 
j=i+l 

and set 

p, = 0, 

qn = 0, 

r, = 0. 

Then the following inequality holds: 

pi + 4i + ri = aii+l 2 ui+lj Q 09 ldi<f&. 
j=l 

Furthermore, if ui i + 1 # 0 and Cy_ lui+ 1 j < 0 for some i < n, then we have 

pi + 9i + ri < 0 for some i < 72. (12) 

THEOREM 3. Let A be u nonsingulur diagonally dominant Z-matrix with 
unit diagonal elenzents and Cy, la,,j > 0. Assume that Cjn_,ai+lj > 0 if 

cy ,” laij = 0 for SOW i < n. Then A( cx) is a strictly diagonally dominant 
Z-matrix, and p(T(a)) < 1 fir 0 < cri < 1 (1 < i < n>. 

Proof. Let d(a){, l(aIj, and u(a), be the sums of the elements in 
i of D(a), L(n), and V( (Y 1, respectively. The following equations hold: 

d(a)i = aij = 1 - cqp,, l<i<n, 

i-l 

I( (y)i = - C {aij} = li + ‘YiQi, l<i,<n, 
j=l 

u( a)i = - 5 {Zij} = Ui + airi, l,<ign, 
j=i+1 

row 

(13) 
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where 1, and ui are the sums of the elements in row i of L and U for 
A = I - L - U, respectively. Since A is a diagonally dominant Z-matrix, 
from (11) the following relations hold: 

1 - cqaii+lai+,j > 0 for j=i, 

i-l 

(1 - q)aij - cziaii+l 5 ai+lk < 0 for i <j. 
k=i+Z 

Therefore, Z( CX>~ > 0, u(a), > 0, and A( a) is a Z-matrix. Moreover, from 
(12) and the assumption, we can easily obtain 

d( a)i - I( OJ)i - U( (Y)i = (di - li - lLi) - ai( pi + 9i + ri) > O 

for all i. ( 14) 

Therefore, A(a) satisfies the condition of diagonal dominance. From u(aji 
> 0, we have 

d( a)i - I( a)! > U( Ct)i > 0 for all i. 

This implies 

u(ff>i 

d( a)i - Z( cr)i < l. (15) 

Hence, p(T(cu)) < 1, by Lemma 3. W 

THEOREM 4. Let A be a matrix satisfying the conditions in Theorem 3. 
Put cxi = (1 - Zi - ui - 2aii+l)/(pi + 9i + ri - 2~2,~+~) for 1 < i < n. 
Then ai > 1, A(a) is a strictly diagonally dominant matrix, and ~(T(cK)) < 
1 for 1 < (Y~ < 0~:. 
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Proof. Since Cj’= 1, j + iai + 1 j < 0, we have 

pi + qi + ri - 2aii+l 

and 

1 - zj - ui - 2qi+, > pi + qi + ri - 2uii+l > 0 

since pi + qi + ri < 0. This implies 

1 - zj - ui - 2fzii+1 
>l 

pi + qi + ri - 2uii+l 
for l&I 

That is, al > 1 for 1 G i < n. Let 

u(a)i = k lUij - “iuii+pi+ljl for 1 
j=i+l 

Then for q > 1 (1 < i < n> the following relation holds: 

119 

for l<i<n, 

(16) 

for lGi<n, 

< n. 

<i<n. 

u(a)l =l(l - ai)uii+,l + i l’ij - “i”ii+lui+ljl 

j=i+Z 

= (1 - cq)uiitl - C C”ij - “i”ii+lui+lj) 

j=i+Z 

= 2(1 - q)uii+l - 2 C”ij - aiuii+lai+lj) 

j=i+l 

= (ui + 2uii+,) f ai(ri - 2~,,+~) > 0. (17) 
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Thus from (13) and (17) we easily obtain for 1 < cq < ~ri (1 < i < a> 

= (1 - Ii) - CXi( pj + 9i) - (Uj + 2a,,+l) - &i(‘i - 2aii+l) 

= (1 - li - Ui - 2Uii+l) - oi( pj + 9i + ri - 2a,,+l) > O’ 

Therefore, A( a> is a strictly diagonally dominant matrix, and thus the 
following equality holds: 

Hence, an application of Lemma 2 yields p(T(a)) < 1 for 1 < oi < o; 

(1 <i<n 1. n 

The behavior of the spectral radius of the proposed method as a function 
of cxi = (Y for the strictly diagonally dominant Z-matrix A is shown in Fig. 1. 

The variation of the spectral radius of the proposed method is extremely 
small compared with that of the SOR method, as shown in Figure 1. 

0.9ooooO 

0.800000 

0.700000 

2 0.600000 

j 0.500000 

3 0.400000 

ii 
w 0.3oOOOo 

(Y 3.35 - 4.34 
w 0.81 - 1.80 

FIG. 1. The spectral radii of the proposed method and the SOR method for 

n. = 10. 
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Moreover, our convergence curve is relatively flat for cr > oopt. However, it 
is extremely difficult to compute an optimal cri directly from Theorem 4. 
Therefore we propose a practical technique for its determination. 

To find oi, we dictate that the equality holds in (17): 

(z$ + 2a,j+,) + cYi(ri - 2Uii.,) = 0, l<i<n. 

Solving this equation, we have 

ui + 2Uii,i 
cri = 

2Uii., - ri ’ 
l<i<n (18) 

4. NUMERICAL EXAMPLES AND CONCLUSION 

We now test the validity of the determination (18). To do SO, we consider 
the following matrix: 

A= 

1 ci c2 ca ci .** 

% 1 Cl c2 . . Cl 

cz c3 . , *. *. c3 

Cl . . .* 1 Cl c2 

c3 ** c2 c3 1 Cl 

. . . 
c3 Cl c2 c3 1 

where ci = -l/n, c2 = - l/(n + l), and cg = -l/(n + 2). We set b 
[see (l)] such that the solution is xT = (1,2, . . . , n). Let the convergence 
criterion be ](xk+’ - xk(J/]lrk+i 1) Q 10d6. We show CPU times and the 
number of iterations in Table 1 for n = 20, 30, 50, and 100. For comparison, 
we also show results for unpreconditioning (GS), the modified Gauss-Seidel 
method (MGS) [l], and the adaptive Gauss-Seidel method (AGS) [4]. 

The iteration number for the proposed method is larger than that for AGS 
[4], while the CPU time for the proposed method is smaller than that for 
AGS. An optimum parameter m,rt of the SOR method was obtained by 
numerical computation. We also obtained the optimum parameter u+ of the 
proposed method by replacing (Y with (Y~ (i = 1,2, . . . , n - 1) by numerical 
computation. 
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Finally, we consider a model problem [5, p. 2021. We use a standard 
central-difference formula and a uniform mesh with length h = l/m. Table 
2 shows CPU times and the number of iterations for the model problem. We 
adopt the theoretical value 

2 
w opt = 1 + sin(7r/m) 

for the SOR method. 
In this paper, we have proposed a new algorithm based on the Gauss- 

Seidel method. As a result we have succeeded in improving the convergence 
of this method. We have shown that the spectral radius of the proposed 
method with c+ is smaller than that of the SOR method. 
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